Calcification of vascular smooth muscle cell cultures: inhibition by osteopontin.

نویسندگان

  • T Wada
  • M D McKee
  • S Steitz
  • C M Giachelli
چکیده

Calcification of vascular tissue is a common complication in aging, atherosclerosis, diabetes, renal failure, aortic stenosis, and prosthetic valve replacement. Osteopontin is a noncollagenous adhesive protein routinely found at sites of dystrophic calcification and synthesized at high levels by macrophages in calcified aortic valves and atherosclerotic plaques. In the present study, we have characterized the calcification of bovine aortic smooth muscle cell (BASMC) cultures in vitro and have studied the effects of exogenous osteopontin on mineral deposition. Induction of calcification in BASMC cultures was alkaline phosphatase-dependent and was characterized by a multilayer cell morphology. Mineral deposition occurred in the basal matrix of multilayered areas as indicated by von Kossa staining, and transmission electron microscopy and electron diffraction identified the mineral as apatite. Ultrastructural analysis of the cultures showed the presence of extracellular matrix vesicles, calcifying collagen fibrils, and nodular-type calcifications similar to those found in calcified heart valves and atherosclerotic plaques. Purified osteopontin (0.05 to 5 microgram/mL) dose dependently inhibited calcification of BASMC cultures, whereas vitronectin and fibronectin had no effect. In contrast to the inhibitory mechanism of levamisole on mineral deposition, osteopontin did not inhibit alkaline phosphatase activity or reduce phosphorus levels in the culture medium. Addition of calcium to the cultures overcame the inhibitory effect of osteopontin on BASMC culture calcification and resulted in decreased levels of calcium in the culture medium and increased levels in the cell layer. Moreover, using high-resolution, colloidal-gold immunocytochemistry, osteopontin was found intimately associated with growing apatite crystals. These data indicate that the effect of osteopontin, although calcium-dependent, was not mediated by simple calcium chelation but most likely by direct interaction of osteopontin with crystal surfaces. These studies suggest that BASMCs can be used to model vascular calcification in vitro and that soluble osteopontin released near sites of vascular calcification may represent an adaptive mechanism aimed at preventing vascular calcification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inflammation and Vascular Calcification Causing Effects of Oxidized HDL are Attenuated by Adiponectin in Human Vascular Smooth Muscle Cells

The role of oxidized high-density lipoprotein (oxHDL) and the protective effects of adiponectin in terms of vascular calcification is not well established. This study was conducted to investigate the effects of oxHDL with regards to inflammation and vascular calcification and to determine the protective role of adiponectin in attenuating the detrimental effects of oxHDL. Cell viability, mineral...

متن کامل

بررسی تاثیر اسیدالائیدیک بر بیان ژن استئونکتین در سلول‌های عضله‌ی صاف دیواره‌ی رگ‌ها

Background and Objective: Atheroma formation and progression of atherosclerosis are dependent on the expression of bone matrix proteins and regulatory factors such as osteonectin in the vessel walls. Studies have shown that consumption of Trans fatty acids increase risk of cardiovascular diseases. In this study, the effect of elaidic acid on osteonectin gene expression as one of the vascular ca...

متن کامل

Regulation of Vascular Calcification by Osteoclast Regulatory Factors RANKL and OPG Regulation of Vascular Calcification: Roles of Phosphate and Osteopontin Angiogenesis and Pericytes in Initiation of Ectopic Calcification Role of Bone Morphogenetic Proteins in Vascular Calcification

Vascular calcification is prevalent in aging as well as a number of pathological conditions, and it is now recognized as a strong predictor of cardiovascular events in the general population as well as diabetic and end-stage renal disease patients. Vascular calcification is a highly regulated process involving inductive and inhibitory mechanisms. This article focuses on two molecules, phosphate...

متن کامل

Calcification of human vascular cells in vitro is correlated with high levels of matrix Gla protein and low levels of osteopontin expression.

The cellular and molecular events leading to calcification in atherosclerotic lesions are unknown. We and others have shown that bone-associated proteins, particularly matrix Gla protein (MGP) and osteopontin (OP), can be detected in atherosclerotic lesions, thus suggesting an active calcification process. In the present study, we aimed to determine whether human vascular smooth muscle cells (V...

متن کامل

Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification.

Osteopontin (OPN) is a non-collagenous, glycosylated phosphoprotein associated with biomineralization in osseous tissues, as well as ectopic calcification. We previously reported that osteopontin was co-localized with calcified deposits in atherosclerotic lesions, and that osteopontin potently inhibits calcium deposition in a human smooth muscle cell (HSMC) culture model of vascular calcificati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 84 2  شماره 

صفحات  -

تاریخ انتشار 1999